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Abstract.  

 

Objective: This paper gives a general framework for optimizing the breath delineation 

algorithms used in Electrical Impedance Tomography (EIT). In lung EIT the delineation 

of the breath phases is central for generating tidal images, subsequent data analysis and 

clinical evaluations. The optimization of these algorithms is particularly important in 

neonatal care since existing breath-detectors developed for adults may give insufficient 

reliability due to the very irregular breathing patterns obtained with neonates in 

comparison to adults. Approach: The approach is generic in the sense that it relies on the 

definition of a gold standard and the associated definition of detector sensitivity and 

specificity, an optimization criterion and a set of detector parameters to be investigated. 

The approach is illustrated here with an example based on a small dataset and a gold 

standard defined by 11 EIT experienced clinicians within the EU-funded CRADL project. 

 Main results: Three different algorithms are proposed that are improving the breath 

detector performance by adding conditions on 1) maximum of tidal breath rate obtained 

from zero-crossings of the breathing signal, 2) minimum of tidal amplitudes and 3) 

minimum of tidal breath rate obtained from Time-Frequency (TF) analysis (apnea alarm). 

Significance: Based on the gold standard, the most crucial parameters of the proposed 

algorithms are optimized by using a simple exhaustive search and a weighted metric 

defined in connection with the Receiver Operating Characterics (ROC). This provides a 

practical way to achieve any desirable trade off between the sensitivity and the specificity 

of the detectors.  
 

Keywords: EIT, breath detection, respiratory system, optimization, lung imaging, ROC, 

inspiration, expiration.  

 

1. Introduction 

 

Robust and reliable detection and delineation of breaths known as a breath detection is the basis 

of lung functionality analysis. The aim of the breath detector is to obtain information about the 

exact timing of the two respiration phases: inspiration and expiration. Accurate breath detection is 

a key parameter in respiratory related clinical use which has multiple applied and cross-

disciplinary applications. However, this process is technically challenging due to the noisy nature 

of the acquired data obtained from the thorax area, measurement artifacts and other factors such 

as the presence of sighs, swallows, transient reductions and pauses (hypopneas and apneas) in 
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breathing. In order to quantify key breathing parameters, accurate identification of inspiration and 

expiration phases in each breath cycle is required.  

Different methods to quantify respiration have been attempted during the last years. Measuring 

airflow pressure, volume signal, or both are examples of the traditional methods which need a 

breathing mask [1, 2]. For example, airway flow curves are used as the basic delineator while the 

airway pressure and the CO2 concentration curves are used to confirm the delineation [3]. 

However, the method is time consuming and potentially prone to human error and indeed 

impractical for large data sets. In order to cope with these problems, automated physiological 

landmark detection in the airflow or epiglottis pressure signal (Pepi) methods are introduced [4]. 

However, the presence of baseline volume shifts, can still render these algorithms inaccurate.  

Similar to the breath airflow methods, breath sound detection algorithms are also developed to 

detect the breath cycle. Although these methods are used in clinical practice, they are mostly 

developed for industrial applications such as breath sound removal/suppression in the music 

industry and monitoring firefighters’ respiration during their duties. These methods are based on a 

template matching approach, and therefore, they are more reliable for adult normal breath 

detection [5]. Recently, transcutaneous electromyography of the diaphragm (dEMG) is used for 

non-invasive breath detection based on the measurement of electrical activity of the diaphragm 

[6, 7].  

Electrical impedance tomography (EIT) is a non-invasive bedside tool in which impedance or 

voltage changes are present due to changes in the regional ventilation. In addition, it allows 

monitoring the functionality of the lungs. Computerized Tomography (CT) and Magnetic 

Resonance Imaging (MRI) could achieve this goal but not at the bedside. Online X-ray 

monitoring may increase the risk of increased ionization due to the need for successive imaging. 

Further, these modalities are incompatible with the neonatal application as they demand full 

corporation with the patient to be stable, which is not feasible [7-10]. Furthermore, CT and MRI 

do not produce dynamic images and it is not possible to achieve continuous monitoring of 

regional lung ventilation in Neonatal Intensive Care Unit (NICU). However, unlike CT or other 

radiographic techniques, EIT is an inexpensive technology which makes continuous real-time 

radiation free monitoring of the lung function possible directly at the bedside without any known 

hazard. The EIT therefore can be an ideal candidate to be applied for monitoring mechanically 

supported neonates [8-14]. 

 

The main scope of this study is to provide a general approach to achieve an optimized breath 

delineation for neonates and premature newborns using an EIT device.  A significant number of 

studies for lung function monitoring using EIT have been published in recent years [15-19]. 

There are different methods to resolve the respiratory related information from the chest EIT 

signal. Peak and slope detection based on the breathing (impedance) signal is straightforward in 

order to determine the breathing cycles in tidal breathing [4, 5, 20]. Indeed, the slope of the 

breathing signal shows whether the total impedance is increasing or decreasing in order to 

determine the inspiration and expiration phases.  However, due to the presence of cardiac related 

signal components and other disturbances, the method is prone to yield high error rates. 

Frequency domain filtering is attempted as a solution to decompose and extract cardiac and 

respiratory related signals [16, 21, 22].  However, the method often suffers from a frequency 

overlap of the respiration harmonics and the heartbeat signal. In order to achieve a proper 

separation of the respiratory and cardiac-related signals, Principal Component Analysis (PCA) 

may be used. The PCA demands identification of template functions for time domain filtering. It 

is a multivariate statistical method and also time consuming which makes the method not suitable 
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for real time analysis [17]. Consequently, Independent Component Analysis (ICA) has been used 

to increase the accuracy of decomposing the EIT signal into independent components based on 

statistical characteristics of the signals [23].  

 

In our study, the following algorithms are proposed (in the order of increased complexity) 

1) the zero-crossing (ZC) algorithm, 

2) the zero-crossing algorithm with amplitude threshold (ZC-AT),   

3) the zero-crossing algorithm with amplitude threshold and FFT-based breath rate estimation 

(ZC-AT-FFT). 

 

The algorithms are using as input the total impedance signal obtained from EIT and are 

improving the detector performance by adding conditions on 1) maximum of tidal breath rate 

obtained from zero-crossings of the breathing signal, 2) minimum of tidal amplitudes and 3) 

minimum of tidal breath rate obtained from Time-Frequency (TF) analysis (apnea alarm). In 

analogy to [5, 20] we determine the breathing cycle from the position of peaks and slopes in the 

breathing signal and add an extra criteria regarding the minimum distance in between zero 

crossings at one half and a full cycle, respectively. In this way, higher oscillating error sources are 

avoided. In the second algorithm, an amplitude threshold is used to remove small amplitude 

fluctuations (e.g., cardiac related) which are not breaths. Finally, in the third algorithm, the Short-

Time Fourier Transform (STFT) is employed to dynamically estimate the breath rate,  facilitating 

a lower bound on what is realistically considered to be a breath (e.g., by detecting hypopneas and 

apneas) [24].  

The most crucial parameters of these algorithms are optimized by using a simple exhaustive 

search and a weighted metric defined in connection with the Receiver Operating Characterics 

(ROC). This provides a practical way to achieve any desirable trade-off between the sensitivity 

and the specificity of the detectors.  The approach is generic and is illustrated here with an 

example based on a small dataset with clinical EIT data from an ongoing study within the EU-

funded CRADL project.  A gold standard was defined based on 80 % certainty (agreement) where 

11 EIT experienced clinicians were asked to examine the corresponding impedance plots and to 

define the corresponding breath phases. It is emphasized that this approach is non-parametric in 

the sense that no statistical assumptions have been made on the population distributions from 

which the data are drawn. To this end, the non-parametric gold standard  constitutes a generic 

approach which is currently under development and is expected to be useful in many other EIT 

related issues and investigations where breath delineation and tidal breathing is of great 

importance, see e.g., [25]. 

 

2. Methods 

 

2.1. Data acquisition 

 

Data collection is performed in a prospective study comprising 10 pediatric patients as part of the 

CRADL project. The study is approved and funded by EU as Continuous Regional Analysis 

Device for neonate Lung (CRADL) project under the ethic ID number of NCT02962505. The raw 

EIT data are acquired by the Swisstom EIT belt system with 32 electrodes at the frame rate of 48 

Hz.  This system is specially designed for infants who had thorax diameters as small as 17.5 cm.  

Current injections with amplitude of 3 mA rms at a frequency of 200 KHz were applied in an 

adjacent injection protocol. The resulting voltage differences were measured by the remaining 
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electrode pairs after each current injection. The GREIT reconstruction algorithm [19] was used to 

reconstruct the images. 

 

2.2. Breath detection 

 

In the following, the description of the three proposed algorithms and their related parameters are 

given. Subsequently, the definition of the gold standard, the optimization and the validation of the 

methods are presented.  

 

2.2.1 Zero-crossing algorithm 

 

The zero-crossing (ZC) algorithm constantly monitors the time instances of zero crossings in the 

breath impedance signal and operates with the two states “Wait for Raising Crossing” (WRC) and 

“Wait for Falling Crossing” (WFC), see Figure 1. The “Identical Crossing Spacings” (ICS) and 

“Different Crossing Spacings” (DCS) in the breath signal are defined as the differences in the 

time of consecutive zero crossings with identical or different slopes, respectively. To mitigate the 

detection of rapid oscillations as being breaths, two threshold parameters are defined, the 

Minimum Identical Crossing Spacing (MICS) and the Minimum Different Crossing Spacing 

(MDCS) in seconds. These parameters are also normalized to the maximal breath period so that 

 

MICS = MICSfact · 60/maxBR 

    MDCS = MDCSfact · 60/maxBR        (1) 

 
where MICSfact and MDCSfact are the normalized parameters and maxBR the assumed maximal 

breath rate in breaths/min. 
During the WRC state, the algorithm is constantly updating the current minimum of the signal. If 

a raising zero crossing is detected and both criteria ICS > MICS and DCS > MDCS are satisfied, 

then the last minimum is confirmed as the last expiration phase and the state of the algorithm is  

 

 

 
Figure 1. Illustration of the zero-crossing algorithm with Identical Crossing Spacing (ICS) and Diff erent 

Crossing Spacing (DCS) indicated in the breath (impedance) signal. The green and red diamonds indicate 

the detected minima and maxima during the expiration and inspiration phases, respectively. Left: end of 

WRC state and confirmed expiration phase. Right: end of WFC state and confirmed inspiration phase.  
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changed to WFC. Similarly, during the WFC state, the algorithm is constantly updating the 

current maximum of the signal. If a falling zero crossing is detected and both criteria ICS > MICS 

and DCS > MDCS are satisfied, then the last maximum is confirmed as the last inspiration phase 

and the state of the algorithm is changed to WRC. 

Tidal amplitudes are defined as the diff erences in signal impedance amplitudes between the 

maxima during the inspiration phases and the corresponding minima during the expiration phases. 

Here, it is assumed that the expiration phase precedes the inspiration phase during one breathing 

cycle. With the ZC algorithm, the maximal breath rate parameter is set to maxBR = 150 

breaths/min and the parameters MICSfact and MDCSfact are optimized as described below. 

 

2.2.2 Zero-crossing algorithm with amplitude threshold 

 

To decrease the rate of False Positives (FP) in breath detections due to superimposed small 

amplitude changes, such as cardiac related impulses during short periods of no breathing or other 

disturbances, we propose using an amplitude threshold which has proven to be very efficient. A 

statistical based threshold is therefore used here as follows. It is assumed that a finite record of 

data is going to be analyzed where the majority of signal samples (at least more than, e.g., 50%) 

come from the measurement periods containing breathing signals and not only noise. 

To determine a typical value representing large tidal amplitudes, we choose the tidal amplitude 

typTA at a certain upper percentile UP of all tidal amplitudes in the record. This is to avoid 

comparing to some large impulsive disturbances, noise or other signal artifacts during the 

recording. In this study the value UP = 0.8 has emerged as a good compromise and has been fixed 

during the optimization. A lower threshold for tidal amplitudes is then determined as lowTA = 

typTA·lowTAfact where lowTAfact is a lower amplitude factor chosen in the range 0 < 

lowTAfact < 1. In the breath detection algorithm, whenever a tidal amplitude detected by the zero 

crossing algorithm has a tidal amplitude lower than lowTA, it will be discarded as a tidal 

amplitude and not counted as a breath. With the ZC-AT algorithm, the maximal breath rate 

parameter is set to maxBR=150 breaths/min, the upper percentile UP=0.8 and the parameters 

MICSfact, MDCSfact and lowTAfact are optimized as described below. 

 

2.2.3 Zero-crossing algorithm with amplitude threshold and FFT-based breath rate estimation 

 

A Short-Time Fourier Transform (STFT) is straightforward to implement on the breath 

impedance signal x(n) which is given by the sum of pixel (impedance) values obtained from EIT - 

see details in [19]. The STFT is given here by the following Fast Fourier Transform (FFT) 

calculation [26] at discrete frequency and time (k, n) 
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Here, a sliding time window is employed where xn−l denotes the finite sequence of temporary data 

to be analyzed, hl the corresponding window weight function of length M, N the size of the FFT, 
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and where the discrete impedance signal x(n) has been sampled at the frame rate fs . The mean nx   

is calculated as .
1 1
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A crucial step of any STFT implementation is to determine a suitable trade-off  between the 

resolution in time and frequency. Based on the available set of patient data, we have found that a 

suitable time window for analysis in our application is about 3 seconds in duration yielding a 

window length of 143 samples at a frame rate of 48 Hz. A zero padding is used with the 

parameter N = 1024 yielding a FFT frequency resolution of 2.8 breaths/min. A Kaiser window 

[26-28] is employed to achieve an optimal trade-off  between the width of the main-lobe (actual 

frequency resolution) and the side-lobe rejection in the frequency domain. Here, the Kaiser 

window was chosen with a main-lobe width of about 30 breaths/min and a side-lobe rejection 

better than 30 dB. Finally, the breath rate estimate BR(n) is obtained as the breath rate for which 

the STFT ),( nkX  has its maximum at time n, see Figure 2.  

Note that in (2), it is necessary to subtract the mean nx of the temporary data vector to avoid 

spectral leakage from the zero frequency component (DC level) in the FFT. However, a further 

improvement is also obtained by pre-processing the data using a digital high-pass filter to remove 

the dominating low frequency contents. Here, a second order high-pass Butterworth filter has 

been used with a cut-off  frequency of 15 breaths/min. 

A breath alarm level BA is defined in breaths/min. In the breath detection algorithm, whenever a 

 

 

Figure 2. STFT spectrum of the EIT data (blue line) and Kaiser window (dashed line). The respiratory rate 

estimate is defined as the frequency for which the STFT has its maximum (red star). 

tidal amplitude detected by the zero-crossing algorithm has a tidal amplitude lower than lowTA, 

or the estimated breath rate BR(n) is lower than the alarm level BA, it will be discarded as a tidal 

amplitude and not counted as a breath. 

With the ZC-AT-FFT algorithm, the maximal breath rate parameter maxBR is dynamically set to 

maxBR(n) = 4·BR(n) breaths/min, the upper percentile UP = 0.8 and the parameters MICSfact, 

MDCSfact, lowTAfact and BA are optimized as described below. 
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2.3 Optimization and validation of breath detection 

 

In order to perform an optimization and validation of the breath detection algorithms, there is a 

need for a gold standard. In the following, details of defining the gold standard and the procedure 

of optimization and validation will be described. 

 
 

2.3.1 Gold standard for breath detection 
 

To optimize and validate the breath detection algorithms two sets of data were selected, a test set 

and a validation set, each set comprising 10 records of CRADL patients’ data (impedance signals) 

with a duration of 80 seconds each.  

Based on their experiences as neonatologists working with EIT, 11 clinicians were asked to 

examine the corresponding impedance plots and to indicate which peaks that correspond to a 

regular breath cycle, and ignore other peaks. The 80% limit of agreement was defined as a gold 

standard.  It was therefore decided to define as a true breath (or positive breath) all peaks that at 

least 80% of the clinicians agreed it was a breath, and to mark the other peaks as no breath (or 

negative breath). The result of the examination (gold standard for breath detection) is illustrated  

in the Figures 5-6 showing an example of the breath impedance signals together with a red and a 

black asterisk for a positive and a negative breath, respectively.  
 

2.3.2 Optimization 

 

The test data sets have been used for training in order to optimize the breath detection algorithms 

ZC, ZC-AT and ZC-AT-FFT, in terms of their Receiver Operating Characteristics (ROC) defined 

by the corresponding true positive rate (TPR) and false positive rate (FPR) [29]. The validation 

data sets have then been used to validate the results in terms of the ROC. The number of True 

Positives (TP), False Negatives (FN), False Positives (FP) and True Negatives (TN) are readily 

calculated based on the output of each detector in comparison to the gold standard. The TPR and 

FPR are then calculated based on all the 10 data sets in either the test set or the validation set, 

respectively. 

To define a practical optimization problem in view of the multi-criteria ROC plot, we employ the 

weighted norm (a weighted metric distance from the optimal point (FPR, TPR) = (0, 1)) 

 

,)1()0()( 222  TPRFPRwd     (3) 

 

where θ is the parameter vector (e.g., θ = (MICSfact, MDCSfact, lowTAfact, BA) for the ZC-AT-

FFT algorithm), FPR and TPR are the false and true positive rates obtained with the current 

parameters, and w is a positive weighting factor. The purpose of the weighting is to parameterize   

the trade-off  between the conflicting requirements to have a large TPR (high sensitivity) and a 

small FPR (high specificity) at the same time. In particular, in our example, we are mostly 

concerned with emphasizing a small FPR, and a suitable weight for this purpose was found to be 

w = 10. 

The discrete nature of this global optimization problem makes the problem very complex. In 

particular, the parameters of the algorithms are not independent and the change of one parameter 

may be compensated by a change of another parameter making the solution non-unique. Since the 
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corresponding global optimization problem becomes huge when increasing the number of degrees 

of freedom, a practical approach is to use the optimization software to make experiments and to 

find a good compromise regarding which parameters that realistically can be fixed and which 

parameters that need to be optimized. In this sense, the resulting parameters will always be 

suboptimal. The results presented below constitute one such compromise and serves the purpose 

to illustrate the proposed optimization methods and to quantify the (suboptimal) performances of 

the breath detectors that have been studied. 

To this end, the most important parameter of the detectors ZC-AT and ZC-AT-FFT is the lower 

amplitude factor lowTAfact for which it was easy to find an optimal interior solution with 0 < 

lowTAfact < 1. 

 

3. Results 

  

 

Figure 3. Weighted metrics over the chosen parameter set in the optimization of the ZC-AT and the ZC-

AT-FFT algorithms, respectively.   

 

As it is explained in section 2, the proposed metric distance function (3) with a weight w = 10 is 

used to optimize ZC, ZC-AT and ZC-AT-FFT algorithms.  Figure 3 shows an example of 

choosing the optimal parameters based on defining a minimum distance from the perfect optimal 

point (TPR = 1, FPR = 0).  The corresponding metric distances for each possible choice of the 

parameters are calculated, and shown (sorted) in Figure 3.  Figure 4 shows a typical example of 

determining an optimal lowTAfact when the other parameters are fixed on their optimal values. 

The search for the optimal lowTAfact has been done in the range of [0  0.3] with the step forward 
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of 0.001 when MICSfact, MDCSfact and BA are fixed on 0.3, 0.1 and 30, respectively. The most 

important optimization parameter is lowTAfact where an interior solution satisfying strict bounds 

0<lowTAfact<1 could readily be found. With the other parameters, due to their inherent 

redundancy, the optimal solution always saturated at the given upper or lower parameter bounds. 

Hence, considering the discrete nature of this global optimization problem, a relatively small 

parameter space has been used together with an exhaustive search for minimizing the metric 

distance function (3) with weight w = 10. The following results have been obtained: 

 

• Zero-crossing (ZC) algorithm. 

Default parameters: MICSfact=0.75 and MDCSfact=0.25. 

Validated performance: FPR=0.23, TPR=0.96. 

 

• Zero-crossing (ZC) algorithm. 

Parameter range: 0.5 ≤ MICSfact ≤ 0.75 and 0.1 ≤ MDCSfact ≤ 0.25. 

Optimized parameters: MICSfact=0.5 and MDCSfact=0.1. 

Validated performance: FPR=0.23, TPR=0.97. 

 

• Zero-crossing algorithm with amplitude threshold (ZC-AT). 

Parameter range: 0.5 ≤ MICSfact ≤ 0.75, 0.1 ≤ MDCSfact ≤ 0.25 and 0.1 ≤ lowTAfact ≤ 0.3. 

Optimal parameters: MICSfact=0.5, MDCSfact=0.1 and lowTAfact = 0.25. 

Validated performance: FPR=0.08, TPR=0.95. 

 

• Zero-crossing algorithm with amplitude threshold and FFT-based breath-rate estimation (ZC-

TA-FFT). 

Parameter range: 0.5 ≤ MICSfact ≤ 0.75, 0.1 ≤ MDCSfact ≤ 0.25, 

0.1 ≤ lowTAfact ≤ 0.3 and 0 ≤ BA ≤ 40. 

Optimal parameters: MICSfact=0.5, MDCSfact=0.25, lowTAfact = 0.15 and BA = 30. 

Validated performance: FPR=0.06, TPR= 0.84.  

 

Figure 5 shows a result of using the ZC-AT algorithm with optimal parameters for a typical 

breath detection example using the validation data set.  The upper plot shows the breath 

impedance signals together with a red and a black asterisk for a positive and a negative breath, 

respectively. A four seconds interval at the beginning and at the end of each data have been 

excluded from the investigation, allowing the breath detectors to stabilize and avoid edge effects. 

The lower plot shows the output of the optimized ZC-AT detector. The performance in terms of 

TP, FN, FP and TN is shown in the title of the upper plot. It is seen that the ZC-AT algorithm 

performs with 36 TPs and 3 FPs (indicated in the figure).  
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Figure 4. A typical example of determining an optimal lowTAfact when the other parameters 

fixed on their optimal values. 

 

  
 

 

Figure 5. Breath detection performance on the validation data no.7 with zero-crossing algorithm 

complemented with amplitude threshold (ZC-AT). 
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In Figure 6 the ZC-AT-FFT algorithm with optimal parameters is used for the same particular 

breaths as in Figure 5. The second and third plots show the output of the optimized detector using 

the ZC-AT-FFT algorithm and the corresponding estimated breath rate, respectively. The detector 

performs with 1 FP and 29 TPs for the same data. It is easy to identify the particular breaths 

where the ZC-AT-FFT algorithm is able to avoid 2 of the FPs by employing a breath alarm level 

(BA). However, this is done with the cost of neglecting TPs in the area/situations with breath rate 

lower than BA.  

The results for both test and validation data are illustrated in the corresponding Receiver 

Operating Characteristics (ROC) plots shown in Figure 7. The upper plot shows the results with 

the ZC-AT-FFT algorithm and the lower plot with the ZC-AT algorithm. The green circles 

indicate the performances obtained with the various parameter settings calculated over the 10 

testing (training) data, the red asterisk indicates the optimal point over the test set and the blue 

asterisk indicates the corresponding performance calculated over the validation set. The black 

asterisk and the black circle indicate the validated performance of the ZC algorithm, with default 

parameters and optimal parameters as described above, respectively. It is seen that both the ZC-

AT-FFT and the ZC-AT algorithms performs better than both the default ZC and the optimized 

ZC algorithm in test and validation data set. With the current weight (w=10), the ZC-AT-FFT 

results in slightly lower FPR than the ZC-AT whereas, the ZC-AT provide slightly higher TPR 

than the ZC-AT-FFT algorithm. 
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Figure 6. Breath detection performance on the validation data no.7 with zero-crossing algorithm 

complemented with amplitude threshold and FFT-based breath-rate estimation (ZC-AT-FFT). 
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Figure 7: Receiver Operation Characteristics (ROC) for breath detection with the ZC-AT-FFT (upper plot) 

and ZC-AT (lower plot) algorithms, and a comparison with the ZC algorithm. 

 

 
5. Summary and conclusions 

 

A generic framework for optimizing the breath delineation algorithms used in Electrical 

Impedance Tomography has been given in this paper. In particular, the approach is based on the 

definition of a gold standard for breath detection, the associated sensitivity and specificity 

measures, an adequate optimization criterion defined on the ROC-plane and a set of detector 

parameters to be optimized. 

The results show that both the ZC-AT and the ZC-AT-FFT algorithms outperform the 

conventional ZC algorithm in terms of the ROC. The main reason for this is that the amplitude 

threshold is able to avoid small amplitude distrurbances (such as cardiac related signal 

components, etc) during periods of little or no breathing being interpreted as breaths. The addition 

of the FFT-based breath rate estimate is able to further decrease the FPR, but only at the expense 

of a decreased sensitivity. The ZC-AT-FFT algorithm has the advantage to output the auxiliary 

instantaneous, short-time estimate of the breath rate. Its disadvantage, however, is the higher 

computational complexity (of the short-time FFT) as compared to the ZC-AT algorithm. 
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